

Ocean Wave Energy Conversion – A Survey

Public domain photo by pdphotos.org.

Annette Muetze und Jennifer Vining

Outline

- Ocean Energy Resources
- Wave Energy Some Calculations
- Classification of Wave Energy Converters
- Open Questions
 - -A Lot of Room for Research!
- Conclusions

Hydropower Plants – Well-Known

Public domain photo (in the US, work of the US Federal Government), available at www.wikipedia.com.

Aerial view of Saint Anthony Falls with the upper dam (there is also a lower dam)

Public domain photo available at www.wikipedia.com. Undershot water wheels on the Orontes River in Hama, Syria.

But the ocean itself is a large energy source!

Ocean Energy Resources

- Energy transfer: Sun \rightarrow Wind \rightarrow Water
- Marine currents
- Tidal currents
- Geothermal winds
- Waves

- \leftarrow Already
- \leftarrow limited
 - commercial
- *⇐* interest

Marine and Tidal Currents

- Energy from marine and tidal currents
- 1. Marine currents
 - E.g. Gulf Stream
 - Uni-directional
- 2. Tidal currents
 - Half-day/ daily/ 14-day cycles
 - Bi-directional
- Prototypes have been realized
- Technology similar to hydroelectric (some models – "underwater wind turbines")

Marine and Tidal Currents

- Energy from marine and tidal currents
- Estimated 5 TW world-wide
 - On the scale of the world's power consumption

Source: R. Bound, "Status and Research and Development Priorities Wave and Marine Current Energy," UK Dep. Of Trade and Industry, 2003.

• Easy to predict, because it is influenced by the rotation of the earth.

Ocean Energy Resources

- Wave energy facts
 - Wave energy provides "15-20 times more available energy per square meter than either wind or solar."

Source: "Electric Power from Waves," Wavemill Energy Corp.

 Regular source of power that can be predicted days in advance.

Public domain photo by pdphotos.org.

A. Muetze & J.G. Vining - 7

Wave Power Levels (kW/m wave crest)

Source: T.W. Thorpe, ETSU, Nov. 1999.

• Note: West-to-east winds cause greater wave energy on western edge of continents.

Ocean Energy Resources

Source: T.W. Thorpe, ETSU, Nov. 1999.

⇒ Definition of the "Wave climate"

- Ocean Currents
 5 TW
- Waves
 - 8,000 80,000 TWh/yr
 - 1 10 TW

[R. Boud, DTI Report # FES-R-132, UK, 2003.]

 10 - 50 kW/m per average wave crest

Commercialization

 Plans for commercial installations all over the world (Spain, France, New Jersey, New York, etc.)

"The footprint of a 100 MW conventional power plant superstructure, including surrounding grounds, fuel unloading areas, waste settling ponds, and additional facilities can require up to 2 square miles of valuable real estate. A comparable OPT power plant would occupy less than 1 square mile of unused ocean surface out of sight from the shore."

Source: "The Power of Waves. The Future of Energy." *Ocean Power Technologies*, http://www.oceanpowertechnologies.com.

Outline

- Ocean Energy Resources
- Wave Energy Some Calculations
- Classification of Wave Energy Converters
- Open Questions
 - -A Lot of Room for Research!
- Conclusions

"The utilization factor for wave power – the ratio of yearly energy production to the installed power of the equipment – is typically 2 times higher than that of wind power. That is whereas for example a wind power plant only delivers energy corresponding to full power during 25% of the time (i.e. 2,190 h out of the 8,760 h per year) a wave power plant is expected to deliver 50% (4,380 h/year)."

Source: "Bringing Ocean Power to the World," Seabased Energy AB, http://www.seabased.com.

Wave Nomenclature

Based on "Archimedes Wave Swing: Theory," Ocean Power Technologies, http://www.waveswing.com.

SWLmean seawater level (surface)λ (or L)wavelength [m]hdepth below SWL [m]Awave amplitude [m]Ccelerity (wave front velocity)Hwave height [m]

Wave Energy and Power Density Calculations

• Energy density

 mean energy flux crossing a vertical plane parallel to a wave's crest

$$E_{density} = \rho_{water} g H^2 / 8 = \rho_{water} g A^2 / 2$$

Based on "Archimedes Wave Swing: Theory," Ocean Power Technologies, http://www.waveswing.com.

• Power density

- energy per wave period

 ρ_{water} seawater density (1000 kg/m³) g gravitational constant (9.81 m/s²)

$$P_{density} = E_{density}/T = \rho_{water}gH^2/(8T) = \rho_{water}gA^2/(2T)$$

T period time [s]

Graph of Wave Energy Density

Power per Meter Wave-Front Calculation

• kW/m

= typical unit of measurefor wave power

Power per wave-front
 = energy density
 · wave-front velocity

Based on "Archimedes Wave Swing: Theory," Ocean Power Technologies, http://www.waveswing.com.

$$P_{wavefront} = C \cdot E_{density}$$

$$= \rho_{\text{water}} g^2 H^2 / (16\omega) = \rho_{\text{water}} g^2 A^2 / (4\omega)$$

Graph of Wave Power

Influence of Water Depth on Wave Energy

- Underwater wave energy converters...?
 Relationship between wave energy and water depth?
- Generally: Wave energy decreases exponentially with $-2\pi d/\lambda$.

$$E(d) = E(d=SWL) \cdot e^{-2\pi d/\lambda}$$

d depth, distance to SWL [m] (total depth at least $\lambda/2$)

 \Rightarrow Enough formulas for today...

Outline

- Ocean Energy Resources
- Wave Energy Some Calculations
- Classification of Wave Energy Converters
- Open Questions
 - A Lot of Room for Research!
- Conclusions

WEC Classifications

Ocean Wave Energy Converters (WECs)			
Turbine-type	Buoy-type or "Point Absorber"		
Oscillating Water Column (OWC)	Tube type		
Overtopping Wave Energy Converter	Float type		
↑ Received research attention early on	↑ Newer idea		

Other forms worthy of notice: Pelamis (Ocean Power Delivery Ltd.)

Note: Ocean current converters are not discussed due to their relatively mature technology which resembles hydroelectric.

Power Area and CEME Seminar at UIUC, October 2, 2006

Oscillating Water Column (OWC)

• Operates much like a wind turbine via the principle of wave induced air pressurization.

A. Muetze & J.G. Vining - 21

OWC Air Chamber Design

• Air chamber

- Wave resonance within the chamber can cause net zero passage of air through the turbine.
- Must be designed with the wave period, height, and length characteristics of local wave climate in mind.
- Must be conducive to air-flow through turbine.

Based on R. Boud, DTI Report #FES-R-132, AEAT Report #AEAT/ENV/1054, UK, 2003.

OWC Placement

• Placement

- Near-shore: Eye sores? Noise? Public acceptance?
- Shoreline: generally greater wave energy, but installation and maintenance costs...

(Lacking available wave-energy pictures – analogous:) Danish wind turbines near Copenhagen

Source: Wikipedia Commons, licensed under the Creative Commons Share Alike License, available at www.wikipedia.com

Power Area and CEME Seminar at UIUC, October 2, 2006

A. Muetze & J.G. Vining - 23

Fixed and Slack Mooring

- Fixed mooring
 - Analogue to off-shore wind-turbines
 - Can better maintain its the position

 \rightarrow higher resistance to incoming waves

 \rightarrow higher energy production

- Slack mooring
 - Can react to change of SWL (i.e. tides)
 - Flexible in rough seas (might damage fixedly moored devices)
 - Lower installation costs

Overtopping WEC

• Works much like a hydroelectric dam

Recap: WEC Classifications

Ocean Wave Energy Converters (WECs)			
Turbine-type	Buoy-type or "Point Absorber"		
Oscillating Water Column (OWC)	Tube type		
Overtopping Wave Energy Converter	Float type		
↑ Received research attention early on	↑ Newer idea		

Other forms worthy of notice: Pelamis (Ocean Power Delivery Ltd.)

Note: Ocean current converters are not discussed due to their relatively mature technology which resembles hydroelectric.

Power Area and CEME Seminar at UIUC, October 2, 2006

Point Absorber – Float Type

Wave Crest

Water weight pushes float down

Power Area and CEME Seminar at UIUC, October 2, 2006

A. Muetze & J.G. Vining - 27

Point Absorber – Float Type

- Float type
 - Float position
 - On ocean surface (positively buoyant)
 - Below ocean surface (neutrally buoyant)
 - Power take-off
 - *Linear generator,* piston directly coupled to linear generator
 - Hydraulics: piston pumps hydraulic fluid
 - Hose pump
 - Contact-less force transmission

Contact-Less Force Transmission System (OSU)

Source: A.von Jouanne, used with permission. Published in: E. Agamloh, A. Wallace, and A. von Jouanne, "A Novel Direct-Drive OceanWave Energy Extraction Concept with Contactless Force Transmission System", *American Institute of Aeronautics and Astronautics*, 44th AAIA Areospace Science Meeting and Exhibit , Reno, Nevada, January 9-12, 2006.

Power Area and CEME Seminar at UIUC, October 2, 2006

Point Absorber – Hose Pump

- Similar to hydraulic system
- Float moves relative to reaction plate
 - Hose stretches,
 pulls in seawater
 - Hose constricts, pushes pressurized seawater to hydraulic generator

Based on R. Boud, DTI Report #FES-R-132, AEAT Report #AEAT/ENV/1054, UK, 2003.

Point Absorber – Tube Type

- Tube type
 - Like float type, except one or both ends of "tube" are open – vertically submerged, neutrally buoyant hollow tube
 - Waves cause pressure difference between ends of tube, inducing sea water to flow
 - Power take-off: piston
 - Linear generator, piston directly coupled to linear generator
 - Hydraulics, piston pumps hydraulic fluid

Important Design Parameters

OWC	Point Absorber	
Wave height, length, and period	Wave height, length, and period	
Chamber dimensions	Total mean water depth	
By-pass valve control	Depth of device below water	
	Length and diameter of float, tube, and/or pump	
	Stroke length	

More Pictures

Many more pictures (and other information!) can be found on the internet! - Some examples:

Ocean Power Technology

http://www.oceanpowertechnologies.com/

Ocean Power Delivery Ltd

http://www.oceanpd.com/default.html

- AcquaEnergy Group Ltd. http://www.aquaenergygroup.com/
- O.H. Hinsdale Wave Research Laboratory at OSU (HWRL) http://wave.oregonstate.edu

and

Motor Systems Resource Facility at OSU (MSRF)

http://eecs.oregonstate.edu/msrf/

Outline

- Ocean Energy Resources
- Wave Energy Some Calculations
- Classification of Wave Energy Converters
- Open Questions
 - -A Lot of Room for Research!
- Conclusions

Oregon State University Conceptual Wave Park

1-2 miles offshore

Magnetic Shaft anchored to sea floor

> Electric Coil secured to heaving buoy

Permanent Magnet Linear Generator Buoy

Common Research Topics

- OWC
 - Air pressure and flow control (bypass valve)
 - Turbine designs
 - Turbine control of wave energy absorption
 - Hydrodynamic characteristics
 - Overall design methods
 - Moorings, installation, and foundation
 - System resonance

Based on R. Boud, DTI Report #FES-R-132, AEAT Report #AEAT/ENV/1054, UK, 2003.

A. Muetze & J.G. Vining - 36

Oscillating

Water Column

Common Research Topics

- Point Absorber
 - Control techniques
 - Turbine design including new power take-off methods
 - Moorings, installation, and foundation

Based on "Conventional and TFPM Generators for Direct-Drive Wave Energy Conversion," *IEEE Transactions on Energy Conversion*, vol.20, no. 2, June 2005.

Power Area and CEME Seminar at UIUC, October 2, 2006

A. Muetze & J.G. Vining - 37

... A Lot of Room for Research!

- High-pressure underwater electric cables
- Purpose-designed inverters
- Wave energy converter dynamic response
- Mechanical
 - Air pressure and flow control (bypass valve)
 - Turbine designs
 - Turbine control of wave energy absorption
 - Hydrodynamic characteristics
 - Overall design methods $\rightarrow \rightarrow \rightarrow$

... A Lot of Room for Research!

- Mechanical cont.
 - ...
 - Moorings, installation, and foundation
 - System resonance, ...
- Electrical
 - Direct power take-off methods
 - Power conversion
 - Power controls
 - Power transmission
 - Electrical reliability
 - Electrical maintenance
 - Grid connection requirements, ...

... A Lot of Room for Research!

- Other areas
 - Weather forecasting for real-time wave behavior
 - Navigating around devices
 - Standardized testing of devices
 - Cost effective waterproofing, corrosion resistant materials, offshore access, …
- Environmental problem areas
 - Animals
 - Coast lines
 - Fauna and seabed
 - Visual impact
 - Pollution,...

Overall Comparison of Major Renewable Energy Sources

Energy Type	Predictability	Energy Density	Potential Sites
Wave	Predictable at most sites	High	70% of Earth is Ocean!
Wind	Fairly unpredictable	Low	Limited to areas with high average wind speed
Photovoltaic (Solar)	Fairly unpredictable	Low	Limited to sunny areas

Conclusion

- Potential of wave energy as an up-andcoming energy source?
- Turbine-/ Point-absorber type, sub-groups
- Also: Many open questions on the road towards commercialization...
- Transfer of knowledge gained in other fields?
- Questions?