HVDC: Pathway to America’s Sustainable Future

Wayne Galli, Ph.D., P.E.
Vice President, Transmission and Technical Services

November 5, 2012
University of Illinois ECE 590I
It’s an election year: Who remembers 1992?

It’s the economy, stupid!

wires

-- with respects to Jim Carville

But let’s take a closer look at why with a brief video introduction to Clean Line…
Introduction Clean Line through the eyes of one of our projects

This and other videos available at:
cleanlineenergy.com/media/videos
Who is Clean Line Energy Partners?

Clean Line Energy’s Projects

- Founded in 2009
- Headquartered in Houston
- 37 full-time employees
- Four projects under active development
- Investors have a long term vision and patient capital

Clean Line Energy Partners (“Clean Line”) develops long-haul, high-voltage direct current (“HVDC”) transmission lines to connect the best wind resources in North America to load centers that lack access to low-cost renewable power.

- HVDC is the lowest cost, least land intensive, most reliable transmission technology to integrate large volumes of renewable energy
- Clean Line’s four projects (of lengths between 550-900 miles each) present up to $10 billion in new infrastructure investment and will supply over 17,500 MW in wind generation capacity
Why do we need new transmission to support renewable energy?

Best wind resources are in “wind belt” of the United States away from population centers

...with very limited access to robust transmission systems
Each of Clean Line’s projects will deliver the same amount of energy from the wind as three Hoover Dams

= 15,000,000 MWh
Wind Energy Coming of Age
Improving wind turbine technology is increasing capacity factors and reducing generation costs.

Net Capacity Factor
At 8.5 meters per second wind speed

<table>
<thead>
<tr>
<th>Rotor Diameter</th>
<th>Hub Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>77 m 1.5 MW</td>
<td>80</td>
</tr>
<tr>
<td>82.5 m 1.62 MW</td>
<td>80</td>
</tr>
<tr>
<td>100 m 1.62 MW</td>
<td>80</td>
</tr>
<tr>
<td>100 m</td>
<td>100</td>
</tr>
</tbody>
</table>

+29% improvement

1. Assumptions: shear alpha = 0.2, Rayleigh distribution, 17% losses from GCF to NCF

Clean Line Energy Partners
Renewable energy cost trends

Declining technology costs combined with increased efficiency is pushing the price for renewables to new lows, intensifying competition to build transmission to connect low-cost regions with demand
Clean Line’s delivered cost to a utility is competitive with other sources of generation

Levelized Cost of Energy\(^1\)

\[\text{\$/MWh}\]

<table>
<thead>
<tr>
<th></th>
<th>Delivered Wind</th>
<th>Coal</th>
<th>Combined Cycle Gas Turbine</th>
<th>Nuclear</th>
<th>IGCC</th>
<th>Solar PV Thin-Film</th>
<th>Solar Thermal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22</td>
<td>70</td>
<td>83</td>
<td>95</td>
<td>112</td>
<td>134</td>
<td>159</td>
</tr>
</tbody>
</table>

1. Cost of other sources of generation based on Lazard’s LCOE estimates in 2011\$, except for lower-end for coal (no carbon capture)
2. Assumes ~725 miles of transmission at $2 MM per mile, endpoint converter cost of $250 MM each, mid-converter cost of $150 MM, & development cost of ~$80 MM
3. Assumes capex costs of $1700/KW, O&M costs of $10/MWh, wind Production Tax Credit, cost of capital of 9%

Source: Lazard; Clean Line Energy
Demand for clean energy is large enough for both in-state and out-of-state resources

Renewable energy supply and demand in PJM and MISO states
Thousand GWh

- **Grain Belt Express**
- **Wind projects under construction**
- **Current wind power supply**
- **Addressable demand**
- **Overall demand**

1. Wind projects currently under construction within the PJM and Midwest ISO states
2. Energy from existing wind projects within the PJM and Midwest ISO states
3. Demand for renewable energy credits within PJM and MISO states for which imported wind delivered by Grain Belt Express would be eligible

Source: EIA, DSIRE, AWEA; November 4, 2011

CLEAN LINE ENERGY PARTNERS
HVDC delivery of renewable energy will augment the existing grid

DELIVERING RENEWABLE ENERGY WITH HVDC

WIND RESOURCE CONVERTER STATION
- Converts energy from AC power to DC power
- Energy is transmitted on the transmission line

DELIVERY CONVERTER STATION
- Energy is received from the transmission line
- Converts energy from DC power to AC power
- Connects with existing transmission system

Typical Converter Station
In the US, the Joint Coordinated System Plan (JCSP) identified 7 HVDC lines to move wind energy.

Source: JCSP 2008
Eastern Interconnection Planning Collaborative (EIPC) identified 6 HVDC lines to move wind energy

Source: EIPC TOTF 2012
HVDC is the ideal technology to move large amounts of power over long distances

More efficient - Over long distances, DC transfers more power with lower line losses than comparable AC lines

Smaller footprint - DC requires a narrower right of way to move an equivalent amount of power over AC lines

Lower cost - Less infrastructure and lower line losses result in lower cost transmission and lower prices for renewable energy

Improved reliability - DC gives power operators complete control over energy flow

Merchant model - Clean Line will fund the costs of the transmission projects and sell transmission capacity to wind generators and load serving entities

<table>
<thead>
<tr>
<th>AC</th>
<th>3000-4000 MW Capacity</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three 500 kV lines</td>
<td>One ± 500 kV bipole</td>
<td>600 foot ROW</td>
</tr>
</tbody>
</table>
DC transmission removes LMP risk

- Historically, the **installation of wind turbines in the windiest areas** has outstripped native demand and available transmission capacity.

- **Oversupply of wind** results in depressed LMP, decreasing the value of the energy, and often results in curtailments.

- With an HVDC solution, the **value of energy** is determined by the delivery location, not the wind farm location.

- This **removes a key risk** to output purchasers and plant owners.

- **DC transmission** – unlike AC transmission with an LMP component – is a **truly fixed cost**
Wind energy delivered by Clean Line Projects will result in health and environmental benefits.

<table>
<thead>
<tr>
<th>EMISSIONS REDUCTIONS PER YEAR*</th>
<th>WATER WITHDRAWAL REDUCTION PER YEAR*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ 10 MILLION TONS</td>
<td>H₂O 4 BILLION GALLONS</td>
</tr>
<tr>
<td>SO₂ 14,000 TONS</td>
<td></td>
</tr>
<tr>
<td>NOₓ 10,000 TONS</td>
<td></td>
</tr>
<tr>
<td>Hg 170 POUNDS</td>
<td></td>
</tr>
</tbody>
</table>

*Source: Clean Line Energy Partners for Grain Belt Express Project
Rock Island Clean Line will Connect Western Iowa with PJM 765 kV System

KEY MILESTONES

<table>
<thead>
<tr>
<th>Regulatory Approvals</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• FERC granted Clean Line authority to negotiate rates with customers</td>
<td></td>
</tr>
<tr>
<td>• Submitted preferred routes to the Illinois Commerce Commission in Oct 2012; will submit preferred routes to the Iowa Utilities Board in 2013</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interconnection</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Acquired 2007 vintage PJM queue positions at 765 kV Collins substation</td>
<td></td>
</tr>
<tr>
<td>• MISO reliability studies underway</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Converter Options</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Purchased land option for Illinois and Iowa converter sites</td>
<td></td>
</tr>
<tr>
<td>• Preferred supplier agreement with Siemens for HVDC converter</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outreach</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Invited more than 40,000 property owners and residents within study corridors to 26 open house meetings—more than 2,000 invitees attended</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental & Routing</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Route alternatives established</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agreements & Partnerships</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• MOU with Kiewit for EPC development support</td>
<td></td>
</tr>
<tr>
<td>• Preferred supplier agreement with Southwire (IL)</td>
<td></td>
</tr>
</tbody>
</table>
Grain Belt Express Clean Line will Deliver Wind Energy from Western Kansas to MO, IN, IL, and points East

Key Milestones

Utility Applications
- Obtained public utility status in Kansas on December 7th, 2011
- Will file with the Indiana Utility Regulatory Commission in 2012

Interconnection
- PJM interconnection studies underway at Sullivan substation in Indiana
- MISO interconnection studies underway at Palmyra Tap 345kV substation in Missouri
- Reliability studies with SPP have begun

Outreach
- Nearly 800 community leaders from more than 100 Kansas, Missouri and Illinois counties provided input on routing at roundtable meetings

Environmental & Routing
- Route alternatives established
Plains & Eastern Clean Line will Deliver Wind Power from Kansas, Oklahoma and Texas to TVA and the Southeast

KEY MILESTONES

| Utility Applications | • Filed utility application in Oklahoma and Arkansas; obtained public utility status in Oklahoma in October 2011
• FERC granted Clean Line authority to negotiate rates with customers |
|----------------------|--|
| Interconnection | • Undergoing SIS at 500 kV substations in TVA
• Reliability studies with SPP underway; seeking approval in November 2012 |
| Converter Options | • Purchased land option for Oklahoma converter site |
| Outreach | • Held over 1,200 meetings in more than 30 counties across OK, AR and TN
• Held ten Public Open House meetings across OK in October 2012 |
| Environmental & Routing | • Route alternatives established |
| Agreements & Partnerships | • Signed supplier agreements with Pelco Structural (OK) and General Cable (AR)
• Entered into agreements with The Nature Conservancy of Arkansas and The Nature Conservancy of Oklahoma
• MOU with TVA
• MOU with Fluor for EPC development support |
Centennial West Clean Line will Deliver Renewable Energy from New Mexico and Arizona to California

KEY MILESTONES

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interconnection</td>
<td>CAISO interconnection request filing planned for 2013 or 2014; WECC Project Coordination Review completed</td>
</tr>
<tr>
<td>Federal Procedure</td>
<td>Signed development agreement with Western Area Power Administration</td>
</tr>
<tr>
<td>Outreach</td>
<td>Held 18 community leader workshops in four states and two tribal nations to gather information about local routing opportunities and constraints</td>
</tr>
<tr>
<td>Environmental & Routing</td>
<td>BLM and USFS project managers working jointly under NEPA process</td>
</tr>
<tr>
<td>Agreements & Partnerships</td>
<td>MOU signed with New Mexico Renewable Energy Transmission Authority; proceeding with rulemaking</td>
</tr>
</tbody>
</table>
Technical Challenges - some of what tends to keep me up at night

• Low short-circuit levels, thus low short-circuit ratios mean weak system interactions on windward end
 – SCR of 3.0 or greater is best. Most Clean Line projects are less than 2.0. Dynamic reactive equipment and robust conversion concerns.
 – Who wins in voltage control? Wind farms or converter station? Possible need for wide area control and coordination with high speed communications.

• Large power injections on the load end
 – System frequency events, operating concerns

• Possible Multi-terminal configurations

• Variability of resources
 – Wind integration concerns – lots of scientific answers, policy makers don’t always like physics
Weak grid interactions: typical “windward” connection diagram for Clean Line Projects
Weak grid interactions: Use of Capacitor Commutated Converters (CCC)

- Reduces/removes need for synchronous condensers.
- Single vendor has patent on topology?
- Untested on overhead lines and at such high voltages
- Only a "slight" premium over standard LCC, but huge savings over adding synchronous condensers
Weak grid interactions: possibility of applying VSC technology in new schemes

- "Tri-pole" configuration
- Three independent symmetrical monopoles
- Each pole rated ~1100 MW
- Independent placement of terminals
- Overhead still requires either full bridge converter or high speed HVDC breaker

- Bi-pole configuration with parallel converters.
- Each pole rated ~2400 MW for total power of ~4800 MW
- Same configuration as HVDC classic except the need for parallel converters to achieve more than 2200 MW.
- Overhead still requires full bridge converters or high speed HVDC breaker
Large injections: typical “load end” connection diagram for Clean Line Projects

Shelby Substation
TVA (In Part)

± Q_{Max-Exchange}

AC Tie-Line No. 1

DC Pole No. 1

DC Pole No. 2

AC Filter Bus No. 2 -- ± 1,000-MVAR

± 200-MVAR ± 200-MVAR ± 200-MVAR ± 200-MVAR ± 200-MVAR

AC Filter Bus No. 1 -- ± 1,000-MVAR

± 200-MVAR ± 200-MVAR ± 200-MVAR ± 200-MVAR ± 200-MVAR

AC Tie-Line No. 2
Large injections: 3500 MW contingency

- Significant coordinated planning must be involved with these projects.
- N-1, N-1-1, N-2 concerns on both load end and receiving end from a planning perspective.
- Loss of 1750 or 3500 MW of generation on the eastern interconnect.
Multi-terminal configurations may be desirable
Integration: Possible need for additional reserves, questions of capacity value

- How much, and over what time periods does power output change? How does this affect system operators ability to match generation to load?
- How valuable are different zero fuel cost resources, in displacing existing resources?
- What ability do renewables have to produce power when the system needs it most?

MW Variations for Load and Net Load of PJM, TVA, and SPP

<table>
<thead>
<tr>
<th></th>
<th>Three-Sigma Variation</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Net Load</td>
<td>Net Load w/Clean Line Projects</td>
<td>Delta</td>
</tr>
<tr>
<td>SPP</td>
<td>3,187</td>
<td>4,006</td>
<td>819</td>
</tr>
<tr>
<td>TVA</td>
<td>2,395</td>
<td>2,764</td>
<td>369</td>
</tr>
<tr>
<td>PJM</td>
<td>10,280</td>
<td>10,410</td>
<td>130</td>
</tr>
</tbody>
</table>

Integration: Diversity is an important component, Illinois/Indiana and Kansas wind are complementary

<table>
<thead>
<tr>
<th></th>
<th>KS</th>
<th>MO</th>
<th>IL</th>
<th>IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>KS</td>
<td></td>
<td>0.33</td>
<td>0.10</td>
<td>0.05</td>
</tr>
<tr>
<td>MO</td>
<td>0.33</td>
<td></td>
<td>0.30</td>
<td>0.19</td>
</tr>
<tr>
<td>IL</td>
<td>0.10</td>
<td>0.30</td>
<td></td>
<td>0.74</td>
</tr>
<tr>
<td>IN</td>
<td>0.05</td>
<td>0.19</td>
<td>0.74</td>
<td></td>
</tr>
</tbody>
</table>

- **Wind blows at different times in different places**
- **Geographic diversity of wind resources helps to reduce overall variability and facilitates wind integration**
- **Kansas and Indiana wind power output are not correlated**

“Low correlation”: between 0.0 and 0.25; “Medium correlation”: between 0.25 and 0.5; “High correlation”: between 0.5 and 1.0

Source: Eastern Wind Integration and Transmission Study, National Renewable Energy Laboratory, 2010; Clean Line analysis