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All power electronic circuits share the following properties:

• Switches make the circuit toggle between two or more different
topologies (different sets of differential equations) at different
times.

• Storage elements (inductors and capacitors) absorb energy
from a circuit, store it and return it.

• The switching times are nonlinear functions of the variables to
be controlled (mostly the output voltage).

The basic source of nonlinearity:

feedback controlled switching
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In addition there are “parasitic” nonlinearities —

1. the nonlinear v − i characteristics of switches,

2. nonlinear inductances and capacitances,

3. electromagnetic couplings between components.

However, the main source of nonlinearity is the ubiquitous
switching element — which makes all power electronic systems
strongly nonlinear even if all components are assumed to be ideal.

Therefore

Power electronics engineers/researchers are invariably dealing
with nonlinear problems.
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Example 1: The voltage-mode controlled buck converter
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Nominal periodic behavior
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But such a behavior occurs only within certain limits of the external
parameters.
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Change of behaviour due to fluctuation of input voltage:
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The change in behavior occurred when the input voltage changed
from Vin =24 V to Vin =25 V.
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When Vin is increased to 35V, the behavior becomes aperiodic, or
chaotic.
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(a) (b)

(a) The experimental period-2 attractor
and (b) the chaotic attractor.
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CHAOS

• Aperiodic waveform

• Seemingly random, noise-like behavior

• Completely deterministic

• The orbit is sensitively dependent on the initial condition

• Statistical behaviour (average values of state variables, power
spectrum etc.) completely predictable.

• Unstable at every equilibrium point, but globally stable.
Waveform bounded.
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Example 2: The current mode controlled boost converter
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Instability and transition to period-2 subharmonic at the critical duty
ratio of 0.5.
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How to probe such phenomena?

• Averaged model
dx

dt
= f(x, µ, t)

(t)

x(t)

Simple, but details destroyed. Eliminates nonlinear effects.
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• Sampled-data (discrete) model

xn+1 = f(xn, µ)

time orbit Observations
DiscreteContinuous−

0 T 2T 3T 4T
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Relatively complex, but accurate. Captures nonlinearity.
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off on onoff
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Sampled data model: (vn, in) 7→ (vn+1, in+1)
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The procedure: stacking of solutions

• Start from an initial condition (xn, yn) at a clock instant.

• Using the on-time equation and the value of Iref , obtain the
length of the on-period.

• Obtain the state vector at the end of the on-period.

• Use this state vector as the initial condition in the off-time
equations, and evolve for (T − Ton). This gives (xn+1, yn+1) at
the next clock instant.

Thus we obtain the map

(xn+1, yn+1) = f(xn, yn)
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Dynamics in discrete time

Iterate the map starting from any initial condition.
Obtain a sequence of points in the discrete state space.
Plot the discrete-time evolution, called the “phase-portrait”.

n n(x  ,y )

n n(x  ,y ) n+1n+1(x    ,y    )

state
space

f

(x    ,y    )

n+3(x    ,y    )n+3

n+2n+2
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For periodic systems, after some initial transient, all the iterates fall
on the same point in the discrete state space. The fixed point of
the map is stable −→ period-1 attractor.
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If the system is period-2 (the same state repeats after 2 clocks),
there will be 2 points in the discrete-time state space
−→ period-2 attractor.
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If the system is period-n (the same state repeats after n clocks),
there will be n points −→ period-n attractor.

If a system is chaotic, there will be an infinite number of points in
the phase portrait. −→ chaotic attractor.
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The phase portrait for the buck converter in the chaotic mode.
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Question: Why, and in what ways, does the system behaviour
change with the change in a parameter?

Studied through Bifurcation diagrams
(panoramic view of stability status).

• Sampled variable at steady state versus parameter, e.g.,
iL(nT ) vs. R.

• Bifurcation diagrams can be plotted against the variation of any
of the system parameters, e.g., Vin, R, Iref etc.
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An experimental bifurcation diagram of the buck converter.
x-coordinate: input voltage Vin,
y-coordinate: sampled value of the control voltage.
Parameter values are: R = 86Ω, C = 5µF, L = 2.96mH, VU = 8.5V,
VL = 3.6V, clock speed 11.14 kHz.
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What is a bifurcation?

• Nothing but loss of stability.

• In a linear system, a loss of stability means the system
collapses.

• In a nonlinear system, when a periodic orbit loses stability,
some other orbit may become stable.

• Thus, at a specific parameter value, one may observe a
qualitative change in the character of the orbit. This is a
bifurcation.
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Bifurcation: qualitative change in system behaviour with the
change of a parameter

Study of bifurcations:

➜ Derive a discrete time map xn+1 = f(xn, µ).

➜ Obtain the fixed point xn+1 = xn.

➜ Examine the Jacobian at the fixed point and find the loci of the

eigenvalues when a bifurcation parameter is varied.

➜ Identify the condition for the eigenvalue(s) moving out the unit circle in

the complex plane.
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Two types of bifurcation seen in power electronics

➀ Smooth bifurcations (found in other systems as well)

➁ Border collision (characteristic of power electronics)
Abrupt change of behavior due to a structural change

Structural change in switching converters = Alteration in topological
sequence e.g., change of operating mode, reaching a saturation
boundary.
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(smooth bifurcation)
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(border collision bifurcation)
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Loss of stability, No structural change
(Smooth bifurcation)
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Change of topological sequence
(involves Border collision bifurcation)
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The two classes of bifurcations

Smooth bifurcations

• Loss of stability without

structural change

• Standard appearance of bi-

furcation diagrams, e.g., pe-

riod doubling cascade, peri-

odic windows etc.

Border collision

• Loss of stability due to struc-

tural change

• Non-standard appearance in

bifurcation diagrams, e.g.,

bendings, sudden transition

to chaos.
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How to analyse such loss of stability of power converters?

Bifurcation theory can help.

A bifurcation occurs when a fixed point of the discrete map loses
stability.

=⇒ At least one eigenvalue crosses the unit circle.
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If the map is smooth, there are three possibilities:

** **

* *

**
*

*

(c)(b)(a)

(a) A period doubling bifurcation:
eigenvalue crosses the unit circle on the negative real line,

(b) A saddle-node or fold bifurcation:
an eigenvalue touches the unit circle on the positive real line,

(c) A Hopf or Naimark-Sacker bifurcation:
a complex conjugate pair of eigenvalues cross the unit circle.
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Examples of period-doubling bifurcation, associated with one
eigenvalue becoming −1.

Common in all feedback-controlled dc-dc converters.
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A saddle-node bifurcation results in the creation of a new orbit (or
the destruction of an existing orbit).

A new periodic orbit coming into being may imply

• Destruction of chaos for a range of parameters (periodic
window)

• Creation of coexisting attractors (multistability).
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A Naimark-Sacker bifurcation causes a periodic orbit change into a
quasiperiodic orbit.
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(Combination of two incommensurate frequencies.)

In discrete time,
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Quasiperiodic and mode-locked periodic behavior in a PWM buck
converter. Slow scale instability. Can also be predicted with the
averaged model.
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These are the three possible ways that a converter can lose
stability without structural change, i.e., without alteration of
topological sequence.

How can we analyse the loss of stability caused by structural
change?
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It has been found that sampled data modeling of all power
electronic circuits yield piecewise smooth maps.

• The discrete state space is divided into two or more
compartments with different functional forms of the map.

• The compartments are separated by borderlines. The
Jacobian changes discontinuously across the borderlines.

x 2

x1

x           x=fn+1 1( n)

x           x=fn+1 ( n)2

Borderline
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The current mode controlled boost converter
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Structure of discrete state space in
in current mode controlled converters

Iref

T

Iref

T T

ii i

(a) (b) (c)

(a) and (b): The two possible types of evolution between two
consecutive clock instants yielding two different functional forms in
the sampled-data model and (c): the borderline case.
7→ Piecewise smooth map.
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Structure of discrete state space
in voltage mode controlled converters

(a) (b) (c)

(e)(d)

(a), (b) and (c): The three possible types of evolution between two
consecutive clock instants, and (d) and (e): the “grazing” situations
that create the borderlines.
7→ Piecewise smooth map.
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Dynamics of Piecewise Smooth Maps

• If a fixed point loses stability while in either side, the resulting
bifurcations can be categorized under the generic classes for
smooth bifurcations.

• But what if a fixed point crosses the borderline as some
parameter is varied?

The Jacobian elements discretely
change at this point
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• The eigenvalues may jump from any value to any other value
across the unit circle.

• The resulting bifurcations are called
Border Collision Bifurcations.

Continuous movement of
eigenvalues in a smooth
bifurcation

Discontinuous jump of
eigenvalues in a border
collision bifurcation

NONLINEAR PHENOMENA. . . 44



Theories have been developed that can predict the outcome of a border

collision bifurcation (which orbit will become stable) depending on the

eigenvalues of the Jacobian matrix at the two sides of the border. These

transitions are usually sudden and abrupt.
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As a system parameter is varied, the change of dynamical
behavior of power converters exhibit a succession of smooth and
border collision bifurcations.

• Generally the first bifurcation from a normal period-1 operation
is of smooth type.

• The development of a smooth bifurcation sequence (e.g., a
period-doubling cascade) is interrupted by border collision
bifurcations.
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Bifurcation diagram of the boost converter with load resistance as
variable parameter.
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Which type of instability is likely in which converter?

1. Voltage mode controlled buck converter (PWM-2): The first
bifurcation is always period doubling. Subsequently period
doubling cascade interrupted by border collision, leading to
direct transition to chaos. Hamill and Deane (1990,1992),
Fossas and Olivar (1996), Chakrabarty and Banerjee (1996)

2. Voltage mode controlled boost converter (PWM-2): Hopf
bifurcation leading to quasiperiodicity. Tse (1997)

3. Voltage mode controlled converters (PWM-1): Hopf bifurcation
leading to quasiperiodic and mode-locked periodic orbits.
Period doubling also occurs. El Aroudi et al. (2000), Maity and
Banerjee (2007)
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4. Current mode controlled boost converter: The first bifurcation
is always period doubling. Subsequently period doubling
cascade interrupted by border collision, leading to direct
transition to chaos. Hamill and Deane (1990,1992,1995),
Chakrabarty and Banerjee (1997), Chan and Tse (1997),

5. Current mode controlled Ćuk converter: Period doubling route
to chaos, truncated by border collision. Tse and Chan (1995)

6. Converters operated in DCM: Period doubling. Tse (1994)

7. Converters undergoing transition from DCM to CCM: border
collision bifurcation leading to quasiperiodicity. Maity and
Banerjee (2007)
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In many applications the operating point constantly changes with
time:

• Power factor correction power supplies;

• Dc-AC inverters;

• Audio amplifiers using dc-dc converters.

Bifurcations are expected even under normal operating condition.
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How to analyze the stability of power electronic circuits?

If the initial condition is perturbed and the solution converges back
to the orbit, then the orbit is stable. The stability margin can be
assessed from the rate of convergence.

Suppose the initial condition is given a perturbation δx(t0). If the
original trajectory and the perturbed trajectory evolve for a time t,

δx(t) = Φ δx(t0).

Here Φ is the state transition matrix.
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The properties of Φ :

x x xA
B C

If xB = ΦAB xA, xC = ΦBC xB

then δxB = ΦAB δxA, δxC = ΦBC δxB

and δxC = ΦAC δxA, ΦAC = ΦBCΦAB
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For LTI systems, the state transition matrix can be obtained as the
matrix exponential

Φ(t, t0) = eA(t−t0)

so that the perturbation at time t can be written as

δx(t) = eA(t−t0)δx0.
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Suppose we are able to find the state transition matrices during the
ON period and the OFF period:

δx(dT ) = A1 δx(0)

δx(T ) = A2 δx(dT )

The product A2 · A1 does not give the state transition matrix over
the whole cycle. One has to take into account how the
perturbations change when they cross the border.

M. A. Aizerman and F. R. Gantmakher, “On the stability of periodic motions,” Journal

of Applied Mathematics and Mechanics (translated from Russian), 1958, pages

1065-1078.
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∆x(tB+) = S ∆x(tB−),

where S, the “jump matrix” or “saltation matrix”, can be expressed
as

S = I +
(f+ − f−)nT

nT f− + ∂h/∂t
.

f− : RHS of the differential equations before switching

f+ : RHS of the differential equations after switching

h(x, t) = 0: the switching condition (a surface in the state space)

I : the identity matrix

n : the vector normal to the switching surface.
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The state transition matrix over the complete clock cycle, called the
monodromy matrix is expressed as

Φcycle(T, 0) = S2 × Φoff(T, dT ) × S1 × Φon(dT, 0),

where S1 is the saltation matrix related to the first switching event,
and S2 is that related to the second switching event.
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The monodromy matrix then relates the perturbation at the end of
the clock period to that at the beginning:

∆x(T ) = Φ(T, 0)∆x(0).

The eigenvalues of the monodromy matrix are also called the
Floquet multipliers. If all the eigenvalues are inside the unit circle,
perturbations will die down and the system is stable.
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The voltage mode controlled buck converter:
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The switching hypersurface (h) is given by

h(x(t), t) = x1(t) − Vref −
vramp(t)

A
= 0,

vramp(t) = VL + (VU − VL)

(

t

T
mod 1

)

The normal to the hypersurface is:

n = ∇h(x(t), t) =











∂h(x(t), t)

∂x1(t)
∂h(x(t), t)

∂x2(t)











=





1

0




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By defining x1(t) = v(t) and x2(t) = i(t), the system equations are

ẋ =







Asx + Bu, A(x1(t) − Vref) < vramp(t),

Asx, A(x1(t) − Vref) > vramp(t).

Where,

As =





−1/RC 1/C

−1/L 0



 , Bu =





0

1/L



Vin
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When the state goes from the off state to the on state,

fp− = lim
t↑tΣ

f−(x(t)) =





x2(tΣ)/C − x1(tΣ)/RC

−x1(tΣ)/L



 ,

fp+ = lim
t↓tΣ

f+(x(t)) =





x2(tΣ)/C − x1(tΣ)/RC

(Vin − x1(tΣ))/L



 .

where tΣ is the switching instant.

NONLINEAR PHENOMENA. . . 62



Thus

fp+ − fp− =





0
Vin

L



 ,

(

fp+ − fp−

)

nT =





0 0
Vin

L
0



 ,

nT fp− =
x2(tΣ)

C
−

x1(tΣ)

RC
.
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∂h(x(t), t)

∂t
=

∂

(

x1(t) − Vref −
TVL + (VU − VL)t

AT

)

∂t

= −
VU − VL

AT
.

Hence the saltation matrix is calculated as

S =











1 0

Vin/L

x2(tΣ) − x1(tΣ)/R

C
−

VU − VL

AT

1










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For a buck converter with the parameters

Vin = 24V , Vref = 11.3V , L = 20mH, R = 22Ω, C = 47µF,

A = 8.4, T = 1/2500s, VL = 3.8V and VU = 8.2V

the switching instant was calculated to be 0.4993 × T .

The state at the switching instants are

x(0) =





12.0222

0.6065



 and x(d′T ) =





12.0139

0.4861



 .

NONLINEAR PHENOMENA. . . 65



The saltation matrix is calculated as

S =





1 0

−0.4639 1





The state matrix is

As =





−1/RC 1/C

−1/L 0



 =





967.12 21276.6

−50 0



 .
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The state transition matrices for the two pieces of the orbit are:

1. Off period:

Φ(d′T, 0) = eAsd′T =





0.8058 3.8366

−0.0090 0.9802





2. On period:

Φ(T, d′T ) = eAsdT =





0.8052 3.8468

−0.0090 0.9800



 .
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Hence the monodromy matrix is

Φ(T, 0, x(0)) = Φ(T, d′T ) · S · Φ(d′T, 0)

=





−0.8238 0.0131

−0.3825 −0.8184





The eigenvalues are −0.8211 ± 0.0708j implying that at the above
parameter values the system is stable.
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An idea for increasing the stability margin:

Φ(T, 0, x(0)) = Φ(T, d′T ) · S · Φ(d′T, 0)

The state transition matrices for the ON and OFF periods are given
by the parameters and the duty ratio. Set by the user’s specs.

There is another handle: the saltation matrix.

S = I +
(f+ − f−)nT

nT f− + ∂h/∂t
.
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• ∂h/∂t can be manipulated by varying the slope of the ramp.

• nT can be manipulated by using current feedback along with
voltage feedback.
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The experimentally obtained bifurcation diagrams (a) under normal
PWM-2 control, and (b) when the secondary control loop is added,
with δVU = 0.7 V.
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Take home message:

• All power electronic circuits are strongly nonlinear systems.

• Power converters may exhibit subharmonics and chaos for
specific parameter ranges. Linear analysis does not predict
these instabilities.

• Smooth as well as nonsmooth (or border collision) bifurcations
occur in such converters.

• To analyse the smooth bifurcations, one has to obtain the
eigenvalues of the monodromy matrix. To analyse the border
collision bifurcations, one has to obtain the eigenvalues of the
same periodic orbit before and after border collision.

• Bifurcation theory helps in delimiting the parameter space and
in devising better controllers to avoid instability,.
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For further reading:

1. Soumitro Banerjee and George C. Verghese, (Editors)
“Nonlinear Phenomena in Power Electronics: Attractors,
Bifurcations, Chaos, and Nonlinear Control”, IEEE Press,
2001.

2. C. K. Tse, “Complex Behavior of Switching Power Converters,”
CRC Press, USA, 2003.

3. Z. T. Zhusubaliyev and E. Mosekilde, “Bifurcations and Chaos
in Piecewise-Smooth Dynamical Systems”, World Scientific,
Singapur, 2003.
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THANK YOU
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