Control and Modulation Schemes for High-Performance Electrical Drive Systems

Tobias Geyer

Department of Electrical and Computer Engineering
The University of Auckland
New Zealand

In collaboration with

ABB ETH Zürich
Outline

Introduction
• Variable speed drives
• Market drivers and R&D trends
• Control and modulation schemes

Three recent drive developments
• Model predictive DTC: *pred. control fully utilizes the hardware capability*
• ABB’s new 5-level topology: *modern control is the enabling technology*
• 35 MW electrical drive: *fault tolerance maximizes the availability*

Conclusions and outlook
What are Variable Speed Drives?
Variable Speed Drives

Electrical machine + Power electronics + Controller

Electro-mechanical power conversion + Decoupling of the machine from the grid => variable speed operation

Control of the machine currents => fast torque and speed response

Tobias Geyer
Control and modulation schemes for high-performance electrical drive systems
April 4, 2011
Variable Speed Drives

Plus auxiliaries: cooling, protection, etc
Variable Speed Drives

Machine side

Grid side

Tobias Geyer
Control and modulation schemes for high-performance electrical drive systems
April 4, 2011
Key Application Areas of Variable Speed Drives
Power Generation

Purposes of Variable Speed Drive:
- Electro-mechanical power conversion
- Variable speed operation => higher efficiency
- Fast control of the turbine torque

Source: Aalborg University
Electrification

Augment *combustion engine* by an *electric drive*:

=> Increase **efficiency**

=> Reduce **emissions** / fuel consumption

=> Simplify mechanical *drive train* (remove clutch, gear box, etc)

Example: diesel-electric train engine
Electrification

Augment **combustion engine** by an **electric drive**:

- Increase **efficiency**
- Reduce **emissions** / fuel consumption
- Simplify mechanical **drive train** (remove clutch, gear box, etc)
Summary: Applications of Variable Speed Drives

Power generation
- Wind turbines
- Pumped hydro (storage)

Electrification
- Electric vehicles (HEV, plug-in HEV, EV)
- Diesel-electric train engines
- Off highway vehicles (OHV)
- Ships
- Oil&Gas: LNG, pipeline compression, subsea pumps
- More electric aircraft

Moreover
- Rolling steel mills
- Pumps, fans, blowers, conveyor belts, etc
- Numerous applications with smaller power
Market Drivers and R&D Trends
Market Drivers:

- Higher **efficiency**
- Lower CO₂ **emissions**
- Lower current and torque **distortions**
- Lower **losses** in the inverter
- **Higher power, voltage, speed**
- **Higher reliability / availability**

R&D Trends:

- Variable speed drives (electrification)
- Induction machines => (permanent magnet) **synchronous machines**
- **New control and modulation schemes**
- Wide **bandgap** semiconductor devices (SiC etc)
- **Multi-level** topologies
- Redundancy
- **Fault-tolerance**
- Online diagnostics
Control and Modulation Schemes
Semiconductors are operated in **on/off mode** (nonlinear regime)

⇒ Sinusoidal voltage waveforms are **approximated** by **switching pattern**

⇒ Current **distortions** and switching **losses**

But: **Inductive** load acts as **low-pass** filter for currents
Control and Modulation: Requirements

- Low **current** distortions => low **thermal** losses
- Low **torque** distortions => no excitation of mech. **resonances**
- **Fast** torque response => high **dynamic** performance
- Low switching **losses** => high **efficiency**, low **thermal** losses
Control and Modulation

- **Cascaded** control loops:
 - Speed control loop
 - Current control loop

- **Current** control **problem**
 => split into current controller and modulator

Fundamental **trade-off** between switching **losses** (frequency) and the current / torque **distortion** levels
Trade-Off (High Switching Frequency)

Inverter: 3-level NPC with IGCTs
Induction machine: 3.3kV, 2MVA
Operation point: \(w_e = 1 \text{pu}, \ T_e = 1 \text{pu} \)

\(f_{sw} = 700 \text{Hz} \)
\(P_{sw} = 16.7 \text{kW}, P_{con} = 2.7 \text{kW} \)
\(\text{THD}_I = 2.31\% \)
\(\text{THD}_T = 1.93\% \)
Trade-Off (*Low Switching Frequency*)

- Inverter: 3-level NPC with IGCTs
- Induction machine: 3.3kV, 2MVA
- Operation point: $w_e = 1\text{pu}$, $T_e = 1\text{pu}$

Parameters:
- $f_{sw} = 150\text{Hz}$
- $P_{sw} = 3.9\text{kW}$, $P_{con} = 2.8\text{kW}$
- THD$_I = 6.9\%$
- THD$_T = 6.0\%$
Trade-Off for PWM / SVM

Current THD vs switching losses

$$I_{s,THD} \cdot P_{sw} = \text{const}$$

Torque THD vs switching losses

$$T_{e,THD} \cdot P_{sw} = \text{const}$$

Tobias Geyer
Control and modulation schemes for high-performance electrical drive systems
April 4, 2011
Control and Modulation: Standard Schemes

Switching losses per distortions

- Direct Torque Control
- Field Oriented Control with PWM/SVM
- V/f control with Optimized Pulse Patterns

Switching losses:
- large
- small

Torque response time (controller bandwidth):
- fast
- slow

Tobias Geyer
Control and modulation schemes for high-performance electrical drive systems
April 4, 2011
Control and Modulation: New Methods

Switching losses per distortions

- **large**
 - Direct Torque Control
 - Field Oriented Control with PWM/SVM

- **small**
 - Model Predictive Direct Torque Control
 - Fast control with Optimized Pulse patterns

Torque response time (controller bandwidth)

- **fast**
 - V/f control with Optimized Pulse Patterns

- **slow**
Control and Modulation: New Methods

Goal: Fully utilize capability of drive hardware
- Minimize **switching losses** per **distortions**
- Achieve very **fast** torque response

Approach:
- Treat control and modulation problem in **one stage**
- Work in the **time-domain**
- Use **model predictive control**

![Control and Modulation Diagram](image-url)
Model Predictive DTC:

fully utilizing hardware capability
ABB’s ACS 6000

Drive:
- 3-level NPC inverter with induction machine
- Up to 9MVA, 3.3kV
- Most **widely used** medium-voltage drive

Applications:
- Large **wind turbines**
- Steel mills
- Large pumps, fans, compressors

Objectives:
- Low **switching losses** in the inverter
- Low current and torque **distortions**
- **Fast** torque and speed control
Direct Torque Control

Control objectives:
- Keep torque, stator flux and neutral point potential within given bounds
- Minimize the switching losses

Control variable:
- Discrete inverter switch positions
Model Predictive Direct Torque Control

Challenging control problem:
- Nonlinear
- Hybrid
- MIMO
- Sampling interval $T_s = 25\mu s$

Tobias Geyer
Control and modulation schemes for high-performance electrical drive systems
April 4, 2011
Model Predictive Direct Torque Control

Minimization of cost function

Prediction of trajectories

Observer

DC-link

T_e^*

Ψ_s^*

$\Psi_s \ \Psi_r$

ω

u

\rightarrow

\rightarrow

\rightarrow

MPDTC

\rightarrow

\rightarrow

\rightarrow

\rightarrow
Model Predictive DTC: Step 1

Predict output trajectories for (all) possible **switching sequences**

Key ingredients:
- Drive model
- Extrapolation

Switching horizon, e.g. ‘eSESE’
- **S**: consider all switch transitions
- **E**: extrapolate/extend torque, flux, NPP
- **e**: optional ‘E’

Prediction horizon N_p
Typically 50..150 time-steps
Model Predictive DTC: Step 1

Predict output trajectories for (all) possible switching sequences

Key ingredients:
• Drive model
• Extrapolation

Switching horizon, e.g. ‘eSESE’
• S: consider all switch transitions
• E: extrapolate/extend torque, flux, NPP
• e: optional ‘E’

Prediction horizon N_p
Typically 50..150 time-steps
Evaluate and **minimize switching losses**

\[J^*(x) := \min_U \frac{1}{N_p} \sum_{k=0}^{N_p-1} E_{\text{loss}}(x_k, u_k) \]

=> Optimal **switching sequence** \(U \)

Apply only the first element of \(U \)

Model Predictive DTC: Step 2

Plan

Do

\(k \)

Plan

Do

\(k+1 \)

Plan

Do

\(k+2 \)
Model Predictive DTC Problem Formulation

Performance Index: \(J^*(x) := \min_U \frac{1}{N_p} \sum_{k=0}^{N_p-1} E_{\text{loss}}(x_k, u_k) \)

\(E_{\text{loss}}(x_k, u_k) \) Short-term avg. switching (power) losses

\[
\begin{align*}
 x_{k+1} &= f(x_k, u_k), & \text{Model of machine and inverter} \\
 y_k &= g(x_k), & \text{Outputs (torque, flux and NP)} \\
 y_k &\in \mathcal{Y}, & \text{Bounds on torque, flux and NP} \\
 u_k &\in \{-1, 0, 1\}^3, & \text{Discrete-valued switch positions} \\
 u_k &\in \mathcal{U}(u_{k-1}), & \text{Restrictions on switch transitions}
\end{align*}
\]

Main features:
- short switching horizon but long prediction horizon
- tailored online solution approach
- bound width proportional to THD
ACS 6000, \(w_c = 0.6 \text{ pu} \), \(T_c = 0.6 \text{ pu} \); MPDTC with ‘eSSESE’
Comparison: DTC vs MPDTC

ACS 6000, \(w = 0.6 \text{ pu}, T_e = 0.6 \text{ pu}; \)
MPDTC with ‘eSSESSE’
Same torque bounds, flux bounds relaxed by +/-0.01pu
ABB’s simulation environment

DTC

MPDTC
Comparison: DTC vs MPDTC

Results (compared to DTC):
• 60% less switching losses and (!)
• 20% less torque distortions (similar current distortions)
Current THD vs switching losses

Torque THD vs switching losses

Long switching horizon eSESESESE (50-150 steps):
- Current THD: similar to optimized pulse patterns (OPP)
- Torque THD: significantly better than OPP, but at the expense of current THD
Commercial Benefits

• Higher **rating** of inverter possible
 – 40% higher power capability (e.g. from 5 MVA to 7 MVA)
 – Hardware remains the same
 – Software (control) allows company to greatly **increase** margin

• **Standard machines** can be used
 – No **derating** of machine required

Fully utilize the drive hardware
Experimental Results of MPDTC at 1MW

Trans. on Ind. Electronics 2009

Courtesy of ABB Switzerland
ABB’s new 5-level topology: modern control is enabling technology
ABB’s ACS 2000

Drive:
• 5-level aNPC inverter with induction machine
• Up to 1MVA, 6.9kV

Applications:
• Retrofit
• Direct-to-line grid connection (6.0-6.9kV)
• Large pumps, fans, compressors

Objectives:
• Low current and torque distortions
• Low switching losses in the inverter
• Fast torque and speed control

Solution Approach:
• Fast control based on optimized pulse patterns
• Predictive balancing (derivative of MPDTC)

Commercial Benefit:
• Only viable control scheme available so far
• Product release in a few months
Control and Modulation Scheme

Upper Level:
Fast pred. control based on optimized pulse patterns of
- torque
- rotor flux magnitude

\[V = [v_1 \ v_2 \ v_3] \]
\[t = [t_1 \ t_2 \ t_3] \]

Lower Level:
Predictive balancing (derivative of MPDTC) of
- neutral point potential
- 3 phase capacitor voltages

\[U = [u_1 \ u_2 \ u_3 \ u_4] \]
\[t = [t_1 \ t_2 \ t_3 \ t_4] \]
ACS 2000 (5-level aNPC topology with flying phase capacitors); \(w_r=0.8\text{pu}, \ T_r=1\text{pu}\) step to 0.5pu; fast control based on OPP, predictive balancing with ‘eSESE’
35 MW electrical drive: maximizing the availability
GE’s Steadfast 40

Drive:
• Up to 4 back-back 3-level NPC inverter
• Synchr. machine with brushless exciter
• Up to 35MW, 3.3kV

Applications:
• Large compressor trains (LNG)
Electrification of LNG Compressor Trains

Gas turbine driven
Motor is starter only

LNG super train
Motor is starter/helper

e-LNG
Redundant generators feed multiple motors

Main challenges:

- Very high power
- Torsional resonances / grid side harmonics
- High reliability / availability

=> parallel threads
=> interleaving, active damping
=> fault-tolerance
Interleaving of PWM carriers

Concept of Interleaving:
PWM carriers of converter threads are **phase-shifted** against each other
=> certain **harmonics** can be **cancelled**

Interleaved & motoring operation

Non-interleaved & generating operation

Switching patterns & thread currents

Resulting line current

Trans. on Ind. Appl. 2009 (best paper award)
Reliability and Availability

Thread exclusion scenario

Fault in Thread #1 (in drive with 3 threads)

=> Thread #1 is isolated, shut down and repaired

=> Threads #2 and #3 ramp up currents

Seamless transition into **degraded mode** operation

System availability of 99.98% (downtime < 2h/year)

Compare with 94% of Frame 7EA gas turbine
Conclusions and Outlook
Conclusions

- **Market** drivers for electrical drives include
 - **Wind** turbines => higher efficiency
 - **Electrification** => higher efficiency, higher availability
- **Modern control** and **modulation** schemes
 - Fully utilize **hardware** capability (reduce switching **losses** and **distortions**)
 => higher rating, use of standard machines, etc
 - Required for **complex** new **topologies** and drive configurations
- **Fault-tolerance** => higher reliability / availability

Courtesy of ABB Switzerland
Outlook

- **Grid-side** converters
 - Drives
 - Modular multi-level topologies
 - Power systems (FACTS, etc)
 - Power quality (AVC, UPS, etc)
 - HVDC light
 - MVDC grid, e.g. for offshore wind turbines

- **Reliability / availability**
 - Redundancy (device, converter, machine, control)
 - Fault tolerance

- **Electrification**
 - Train engines
 - Large drives for the Oil & Gas industry

- **Low(er) power drives**
Acknowledgments:
M. Morari, ETH Zurich
G. Papafotiou, Chr. Stulz, A. Paice, N. Oikonomou, G. Scheuer, P. Jörg, ABB Switzerland
J. Boys, G. Covic, U. Madawala, Univ of Auckland
S. Schröder, General Electric

For more information:
www.ece.auckland.ac.nz/tgey001
Backup
Evolution of the MPDxC Family

MPDTC with SE, SSE; min. of f_{sw}
- PhD thesis 2005
- Trans on Ind El 2009

MPDTC with long horizons and min. P_{sw}
- CDC 2009

Test runs > 1MVA
- Trans on Ind El 2009

Implementation

MPDTC with SE, SSE; min. of f_{sw}
- PhD thesis 2005
- Trans on Ind El 2009

5-level VSI with high-speed machine
- IECION 2009

MPDCC for 2-level VSI
- ICIT 2010

PMSM
- ECCE 2010

Computationally efficient MPDTC
- ECCE 2010
- Trans on Power El 2011

Benchmarking
- ECCE 2010
- Trans on Ind Appl 2011

MPDCC for multi-level VSI
- ECCE 2010
- Ind Appl Mag 2011

Deadlock avoidance
- MSc thesis 2011

Trajectory ext. methods
- MSc thesis 2010
- APEC 2011

5-level aNPC drive
- Submitted to ECCE 2011

Predictive Balancing
- Implemented, tests ongoing

Benchmarking
- Submitted to ECCE 2011

Grid-side converter with LCL filter
- PhD ongoing, first results submitted to ECCE 2011

Control of harmonics
- IP filed

Analysis and stability
- Submitted to ECCE 2011

Modular multi-level converter
- PhD recently started

Ongoing:
- Control and modulation schemes for high-performance electrical drive systems

April 4, 2011
Search Tree

Search tree induced by optimization problem

So far: full enumeration

Tobias Geyer

Control and modulation schemes for high-performance electrical drive systems

April 4, 2011
Search tree induced by optimization problem

So far: full enumeration

Approaches to reduce computation time?

- More efficient implementation of algorithm
- More efficient extension / extrapolation step
- Reduce number of nodes explored in search tree by using **Branch & Bound**
Evolution of the Optimal Cost during Optimization

Without Branch & Bound

Cost (kW)

Iteration step (number of nodes visited)

Search tree fully explored

Certificate of optimality found

\(u^* \) found

\(\bar{c} \)

Without Branch & Bound
Evolution of the Optimal Cost during Optimization

With Branch & Bound

Upper and lower bound converged

Search tree fully explored

Certificate of optimality found

Certificate of optimality found

Iteration step (number of nodes visited)
Computational Effort

Example: MPDTC with the switching horizon ‘eSSESESE’

Probability distributions:
Number of nodes required to be explored to obtain the optimal cost c^*

Full enumeration

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Probability [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>10</td>
</tr>
<tr>
<td>95%</td>
<td>20</td>
</tr>
<tr>
<td>99%</td>
<td>30</td>
</tr>
</tbody>
</table>

B&B

B&B with upper bound on number of computations

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Probability [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>10</td>
</tr>
<tr>
<td>95%</td>
<td>20</td>
</tr>
<tr>
<td>99%</td>
<td>30</td>
</tr>
</tbody>
</table>